Efficient Computation of Singular Moduli with Application in Cryptography
نویسنده
چکیده
We present an implementation that turns out to be most efficient in practice to compute singular moduli within a fixed floating point precision. First, we show how to efficiently determine the Fourier coefficients of the modular function j and related functions γ2, f2, and η. Comparing several alternative methods for computing singular moduli, we show that in practice the computation via the η-function turns out to be the most efficient one. An important application with respect to cryptography is that we can speed up the generation of cryptographically strong elliptic curves using the Complex Multiplication Approach.
منابع مشابه
An Introduction to Differential Computation Analysis (DCA) on the withe-box cryptography algorithms
Advances in information and communication technologies lead to use of some new devices such as smart phones. The new devices provide more advantages for the adversaries hence with respect to them, one can define with-box cryptography. In this new model of cryptography, designers try to hide the key using as a kind of implementation. The Differential Computation Analysis (DCA) is a side channel ...
متن کاملEfficient implementation of low time complexity and pipelined bit-parallel polynomial basis multiplier over binary finite fields
This paper presents two efficient implementations of fast and pipelined bit-parallel polynomial basis multipliers over GF (2m) by irreducible pentanomials and trinomials. The architecture of the first multiplier is based on a parallel and independent computation of powers of the polynomial variable. In the second structure only even powers of the polynomial variable are used. The par...
متن کاملApplication of variational iteration method for solving singular two point boundary value problem
DEA methodology allows DMUs to select the weights freely, so in the optimalsolution we may see many zeros in the optimal weight. to overcome this prob-lem, there are some methods, but they are not suitable for evaluating DMUswith fuzzy data. In this paper, we propose a new method for solving fuzzyDEA models with restricted multipliers with less computation, and comparethis method with Liu''''''...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کامل